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ABSTRACT 

 
In this paper, we assess nine recent pixel-level 

image fusion algorithms. These fusion algorithms are 

experimentally evaluated with quantitative assessment 

techniques. Finally, a new assessment paradigm for 

image fusion is provided. 

 

 

1. INTRODUCTION 

 

Image fusion integrates images of the same target 

or scene from multiple sensors to produce a composite 

image or images that will inherit most salient features 

from the individual images. A resulting fused image 

can be thought of as an image taken by an advanced 

not-yet-existing imaging sensor that can capture 

multiple salient features of the scene simultaneously. 

The fused image usually has more information about 

the target or scene than any of the individual images 

used in the fusion process. Images used for fusion can 

be taken from multi-modal imaging sensors or from 

the same imaging sensor at different times. The target 

or scene in the images can be exactly the same or 

partially the same (e.g., images taken from slightly 

different angles, some objects in some images 

partially occluded or disappeared, or new objects 

added to the scene). 

 

Image fusion has been investigated by many 

research groups and a number of algorithms have been 

developed (Zhang and Blum, 1999; Scheunders and 

De Backer, 2001; Rajan and Chaudhuri, 2002; Chan et 

al. 2003). Although each algorithm has shown some 

promising aspects, there seems to be a lack of 

universal criteria to measure the quality of the fusion 

algorithms. In many cases, qualitative criteria such as 

visual analysis are used to assess the resulting fused 

images (Toet and Franken, 2003). Recently, some 

quantitative measures have been developed (Xydeas 

and Petrovic, 2000; Qu et al., 2002; Piella and 

Heijmans, 2003; Wang et al. 2003; Wang et al., 2004).  

 

Efforts have been made to review image fusion 

techniques and assess their qualities (Valet et al. 2001; 

Piella, 2003; Smith and Heather, 2005; Sadjadi, 2005), 

but there are still many open issues to be resolved in 

this area, especially in terms of image fusion 

assessment. This paper aims at providing some new 

perspectives in assessment of fusion algorithms and 

filling the gap between theoretical and practical 

assessments. In addition, it provides a new fusion 

assessment paradigm in order to bridge the gap 

between theoretically sound but impractical 

assessments and practically sound but theoretically 

unproven assessments. We focus on unconstrained 

outdoor scenes because of the targeted applications of 

this research. Unconstrained outdoor scenes generally 

refer to natural suburban or rural outdoor scenes (e.g., 

terrains and mountainous areas). They can also 

include urban outdoor scenes (e.g., roads and 

buildings) as they naturally appear. These outdoor 

scenes tend to have more background noises caused 

by the environmental and weather factors. Distances 

to the targets also tend to be greater than indoor 

scenes, and as a result, the targets usually appear 

smaller and less clear in the images. These will thus 

make image fusion more difficult, but applications in 

such scenes can also benefit more from the 

multisensor image fusion.  

 

 

2. IMAGE FUSION ALGORITHMS 

 

2.1 Image Fusion Definition 

 

Currently, there is no universally accepted 

definition of image fusion, but the objective of image 

fusion is clear - improved quality of information 

gained from the fused image. Image fusion can thus be 

simply put as a framework where a composite image 

(or images) can be produced that contains improved 

quality of information about the target or scene 

compared to individual source images. All sources 
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images have to be aligned or registered before being 

fused.  

 

2.2 Overview of Image Fusion Algorithms 

 

2.2.1 Fusion using principle component analysis 

(PCA) 

 

The PCA-based fusion method simply uses pixel 

values of all source images at each pixel location, adds 

a weight factor to each pixel value, and takes an 

average of the weighted pixel values as the result for 

the fused image at the same pixel location. The 

optimal weight factors are determined by the PCA 

technique. 

 

2.2.2 Fusion using Laplacian pyramid  

 

The Laplacian pyramid fusion consists of an 

iterative process of calculating Gaussian and 

Laplacian pyramids of each source image, fusing the 

Laplacian images at each pyramid level by selecting 

the pixel with larger absolute values, combining the 

fused Laplacian pyramid with the combined pyramid 

expanded from the lower level, and expanding the 

combined pyramids to the upper level. The pixel 

selection step above can also be done using a PCA-

based weighted averaging technique. 

 

2.2.3 Fusion using ratio of low pass pyramid  

(RoLP) 

 

In the above Laplacian pyramid method, simply 

replace the difference (i.e., the Laplacian pyramid) 

with a division operation to obtain the RoLP 

pyramids.  

 

2.2.4 Fusion using contrast pyramid 

 

In the above RoLP pyramid method, simply 

replace the division with the following contrast 

formula to obtain the contrast pyramids: 
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where Con
k
 represents the contrast between two 

successive levels Gk and Gk+1 in the Gaussian 

pyramids, and operation ‘EXPAND’ consists of a 

simple upsampling followed by a low-pass filtering.  

 

2.2.5 Fusion using gradient pyramid 

 

A gradient pyramid is obtained by applying a set 

of 4 directional gradient filters (horizontal, vertical 

and 2 diagonal) to the Gaussian pyramid at each level. 

At each level, these 4 directional gradient pyramids 

are combined together to obtain a combined gradient 

pyramid that is similar to a Laplacian pyramid. The 

gradient pyramid fusion is therefore the same as the 

fusion using Laplacian pyramid except replacing the 

Laplacian pyramid with the combined gradient 

pyramid.  

 

2.2.6 Fusion using filter-subtract-decimate (FSD) 

pyramid 

 

The FSD pyramid fusion is conceptually identical 

to the Laplacian pyramid fusion method. The only 

difference is in the step of obtaining the difference 

images in creating the pyramid. In Laplacian pyramid, 

the difference image Lk at level k is obtained by 

subtracting an image upsampled and then low-pass 

filtered at level k+1 from the Gaussian image Gk at 

level k, while in FSD pyramid, this difference image is 

obtained directly from the Gaussian image Gk at level 

k subtracted by the low-pass filtered image of Gk. As 

a result, FSD pyramid fusion method is 

computationally more efficient than the Laplacian 

pyramid method by skipping an upsampling step.  

 

2.2.7 Fusion using morphological pyramid 

 

A morphological pyramid is obtained by applying 

morphological filters to the Gaussian pyramid at each 

level and taking the difference between 2 neighboring 

levels. A morphological filer is usually for noise 

removal and image smoothing. It is similar to the 

effect of a low-pass filter, but it does not alter shapes 

and locations of objects in the image. The 

morphological pyramid fusion is therefore the same as 

the fusion using Laplacian pyramid method except 

replacing the Laplacian pyramid with the 

morphological pyramid. 

 

2.2.8 Fusion using discrete wavelet transform 

(DWT) 

 

In the DWT-based fusion, the source images are 

first transformed by DWT to their corresponding 

wavelet coefficient images at each scale level. 

Corresponding approximation coefficients and detail 

coefficients of the source images at each level are then 

fused, respectively, based on a certain fusion rule. 



This rule can be a simple addition or averaging, or it 

can be a PCA-based weighted averaging. The fused 

approximation and detail coefficients at each level are 

used in the final reconstruction of a single output 

fused image by an inverse DWT. 

 

2.2.9 Fusion using Harr DWT method for shift 

invariance 

 

One of the shortcomings of DWT method is its 

shift-variance which means that the DWT result varies 

if the source images are shifted, even slightly. Shift 

variance is caused by the downsampling step in the 

image decomposition process of the DWT. The Harr 

DWT is a shift-invariant DWT (SIDWT) that can 

solve the above problem by skipping the 

downsampling step in the decomposition process and 

using a new set of filters at each decomposition level.  

 

 

3. PERFORMANCE ASSESSMENT OF IMAGE 

FUSION ALGORITHMS 

 

Assessment of image fusion performance can be 

first divided into two categories: one with and one 

without reference images. In reference-based 

assessment, a fused image is evaluated against the 

reference image which serves as a ground truth. In 

assessment without reference images, the fused 

images are evaluated against the original source 

images for similarity. Furthermore, fusion assessment 

can be classified as either qualitative or quantitative in 

nature. In practical applications, however, neither 

qualitative nor quantitative assessment alone will 

satisfy the needs perfectly. Given the nature of  

complexity of specific applications, a new assessment 

paradigm combing both qualitative and quantitative 

assessment will be most appropriate in order to 

achieve the best assessment result. 

 

3.1 Qualitative Assessment 

 

Visual analysis and statistical analysis are the 

major forms of qualitative assessment for image 

fusion (Toet and Franken, 2003; Smith and Heather, 

2005). In qualitative assessment, user performance is 

usually used as an indirect criterion to assess 

performance of image fusion in a specific task. For 

example, Receiver Operating Characteristic (ROC) 

analysis, which is widely used especially in medical 

imaging applications, has been used to evaluate 

medical image fusion (Twellmann et al., 2004; Zhou 

et al., 2002). Designed to describe the accuracy of 

diagnostic tests by a radiologist, ROC plots a curve 

between true positive fraction vs. false positive 

fraction in a series of diagnostic tests. It has now been 

expanded to many other applications where ground 

truth is readily available. Other examples of 

qualitative assessment include Measure of 

Performance (MoP), which measures how much a 

fusion technique helps in getting the job done (e.g., 

workload reduction) (Smith and Heather, 2005). 

 

3.2 Quantitative Assessment 

 

3.2.1 Evaluation with reference images 

 

A commonly used reference-based assessment 

metric is the root mean square error (RMSE) which is 

defined as follows: 
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where R(m,n) and F(m,n) are reference and fused 

images, respectively, and M and N are image 

dimensions. 

 

3.2.2 Evaluation without reference images 

 

In many practical applications, reference images 

are not readily available. A number of quantitative 

metrics have been investigated to assess image fusion 

in these situations.  

 

Mutual information (Qu et al., 2002) 

 

Mutual information (MI) is defined as follows. 
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where PAB(a,b) is the joint distribution probability, 

PA(a) and PB(b) are the distribution probabilities of A 

and B, respectively. The mutual information I(A,B) 

measures similarity of image intensity distribution 

between images A and B. Distribution probabilities 

can be obtained using image histograms. 

 

When reference images are available, the 

following steps can be used to assess the fusion 

algorithms with MI: 



 

a. Calculate mutual information between fused 

image and the reference image I(F,R). 

b. A higher value of I(F,R) indicates better 

similarity between F and R, and thus a better 

fusion algorithm. 

 

When no reference images are available, fusion 

assessment is performed as follows: 

 

a. The MI-based measure is defined as  

 

  M
F
(A,B)=I(F,A)+I(F,B) 

 

b. M
F
(A,B) represents total amount of similarity 

between fused image F vs. source images A 

and B. Again, a higher value indicates a 

better fusion algorithm. 

 

Structural Similarity Index (Wang et al., 2004) 

 

Focused on the link between the structural 

information changes in images and the perceived 

distortions of the images, the Structural Similarity 

(SSIM) index is defined as a measure to assess 

similarity of two images A and B as follows:  
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where µA and µB are the mean intensities of images A 

and B, and σA and σB are standard deviations of A and 

B, respectively. σAB is the covariance of A and B, and 

C1 and C2 are small constants for A and B, 

respectively. A higher value of SSIM index 

corresponds to greater similarity of the two images. 

As with the mutual information, performance of image 

fusion can be assessed by the following total amount 

of similarity between fused image F vs. source images 

A and B: 

 

MF(A,B)=SSIM(F,A)+SSIM(F,B) 

 

A higher value of MF(A,B) corresponds to a better 

fusion algorithm. A revised similarity measurement 

was also proposed based on a simplified version of 

SSIM (Piella and Heijmans, 2003). 
 

Perceptual edge preservation value (Xydeas and 

Petrovic, 2000) 

 

The perceptual edge preservation metric 

emphasizes the importance of edge information in 

image fusion quality as follows: 

 

a. It associates important visual information 

with ‘edge’ information, similar to human 

visual system. 

b. It measures the amount of edge information 

that is transferred from the source images to 

the fused image. 

 

Other assessment metrics 

 

A number of other non-reference quantitative 

fusion assessment metrics have also been developed. 

They include Measures of Effectiveness (MOE) 

aiming at the separation of target region and 

background region in the fused image (Sadjadi, 2005), 

an assessment metric based on the amount of retention 

of individual sensor information (e.g., visible, 

thermal) in the fused images (Ulug and McCullough, 

2000), and a quantitative assessment of the signal-

level image fusion with the presence of noses in 

source images (Petrovic and Xydeas, 2003). 

 

 

4. EXPERIMENTAL RESULTS 

 

Two pairs of images (one infrared and one visible 

camera images in each pair) are used to 

experimentally evaluate the nine fusion algorithms 

described in 2.2. The images are first registered using 

control point mapping registration technique. Figgures 

1 and 2 show the fusion results of the two pairs of 

images.  

 

In order to assess the fusion algorithms, we have 

applied the mutual information (MI) method and 

structural similarity index (SSIM) method to all the 

fused images. The assessment results, ordered in 

descending quality rank each, are shown in Tables 1 

through 4.  

 

 
Original-IR          Original-visible Registered image 

 



 
Fused-Laplacian Fused-DWT Fused-Cont. Pyr. 

 

 
Fused-Harr DWT Fused-Grd. Pyr.   Fused-Morp. Pyr. 

 

 
Fused-FSD Pyr. Fused-PCA Fused-RoLP Pyr. 

 

Fig. 1 Experimental results of fusion algorithms 

with the image ‘Parking Lot’ 

 

 
Original–IR Original–visible Registered image 

 

 
Fused-Laplacian Fused-DWT Fused-Cont. Pyr.  

 

 
Fused-Harr DWT Fused-Grd. Pyr.  Fused-Morp. Pyr. 

 

 
Fused–FSD Pyr. Fused–PCA Fused–RoLP Pyr. 

Fig. 2 Experimental results of fusion algorithms 

with the image ‘Road’ 

 

Tab. 1 MI for the image ‘Parking Lot’ 

Rank Algorithms MI(F/V) MI(F/IR) Sum 

1 FSD 88.151 73.094 161.245 

2 Gradient 88.15 73.089 161.239 

3 RoLP 83.166 73.316 156.482 

4 Morphology 82.169 73.266 155.435 

5 DWT 80.31 73.421 153.731 

6 Laplacian  79.831 73.447 153.278 

7 HarrDWT 79.516 73.272 152.788 

8 PCA 81.397 70.293 151.69 

9 Contrast 70.435 43.23 113.665 

 

Tab. 2  MI for the image ‘Road’ 

Rank Algorithms MI(F/V) MI(F/IR) Sum 

1 Harr DWT 86.105 62.193 148.298 

2 FSD 80.666 66.967 147.633 

3 Gradient 80.622 66.974 147.596 

4 Laplacian  78.475 67.551 146.026 

5 RoLP 78.38 67.536 145.916 

6 Morphology 75.261 67.673 142.934 

7 DWT 74.098 67.456 141.554 

8 PCA 78.475 58.514 136.989 

9 Contrast 66.304 39.745 106.049 

 

Tab. 3 SSIM index for the image ‘Parking Lot’ 

Rank Algorithms SSIM(F/V) SSIM(F/IR) Sum 

1 PCA 0.96668 0.38303 1.34971 

2 Gradient 0.95483 0.38266 1.33749 

3 FSD 0.95373 0.38152 1.33525 

4 Harr DWT 0.96657 0.36518 1.33175 

5 Laplacian 0.9591 0.36869 1.32779 

6 DWT 0.96127 0.35837 1.31964 

7 RoLP 0.92238 0.38555 1.30793 

8 Morphology 0.92577 0.36701 1.29278 

9 Contrast 0.44046 0.83744 1.2779 

 

Tab. 4 SSIM index for the image ‘Road’ 

Rank Algorithms SSIM(F/V) SSIM(F/IR) Sum 

1 Gradient 0.97014 0.39633 1.36647 

2 FSD 0.96918 0.39567 1.36485 

3 Laplacian 0.97174 0.38161 1.35335 

4 DWT 0.97297 0.37855 1.35152 

5 Morphology 0.9527 0.38615 1.33885 

6 RoLP 0.90961 0.40215 1.31176 

7 Contrast 0.46194 0.82889 1.29083 

8 Harr DWT 0.85926 0.40698 1.26624 

9 PCA 0.66323 0.18719 0.85042 

 

 

 



5. DISCUSSIONS 

 

It is noted from the assessment results that there is 

not a single fusion algorithm that can consistently rank 

on top of the other algorithms. This may suggest that 

performance of image fusion algorithms depends on 

images of specific applications. On the other hand, we 

also notice that some fusion algorithms do 

consistently rank high, such as gradient pyramids and 

FSD pyramids methods. It may hint that these 

algorithms are better tuned and more robust although 

more tests are needed to verify. 

 

Although it is not totally convincing that fusion 

performance can be measured solely by the MI or 

SSIM values, especially when the values are close to 

each other, they do provide a reasonably good 

quantitative metric. In real applications, information 

from different sensors is not likely to be treated 

equally important. That is, information from some 

sensors is more emphasized than information from 

other sensors. For example, during nighttime 

battlefield missions, infrared sensors may be relied 

more heavily than optical cameras. Furthermore, since 

fused images are used to enhance visual information 

for human users, performance assessment of image 

fusion should be first judged by the users based on the 

mission of specific applications. Quantitative 

measures should only serve as a useful tool to assist 

human users to make difficult judgments whenever 

necessary. 

 

As such, we introduce a weighted measure as a 

new quantitative assessment. Let W
A
 and W

B
 be the 

weights for images A and B with default values of 

W
A
=W

B
=0.5, and F be the fused image. Define the 

new weighted measure as follows: 

 

 M
F
(A,B) = W

A
J(F,A) + W

B
J(F,B) 

 

where J can be MI, SSIM or any other similarity 

metrics. Weights W
A
 and W

B are assigned different 

values based on their importance in specific 

applications. For example, their values can be set to 5 

levels: 0.7 – 0.9 or more = most important; 0.5 – 0.7 = 

very important; 0.3 – 0.5 = important; 0.1 - 0.3 = less 

important; and 0.1 or less = not important. Also, they 

should always follow the constraint W
A
+W

B
=1. Here, 

larger value of MF(A,B) implies a better image fusion 

quality. 

 

A new fusion assessment paradigm is thus 

proposed as follows: 

 

a. First, let a human user use qualitative 

measures (e.g., visual analysis, statistical 

analysis, ROC, MoP) to make initial 

judgments about the fused images obtained 

with various fusion methods. 

b. Second, use quantitative assessment 

measures, including the above weighted 

measure, to verify his/her judgments, or to 

provide assistance for a judgment if the 

difference between fused images is not 

qualitatively clear. 

c. The above steps are repeated until a 

satisfactory judgment is reached. The final 

judgment is solely on the user side. 

 

 

6. CONCLUSIONS 

 

Image fusion techniques have shown some good 

progress in recent years. They are expected to play 

significant roles in many applications, especially in 

military such as US Army Future Combat Systems 

(FCS). This paper reviewed some of the latest image 

fusion algorithms and their performance assessment 

techniques. These fusion algorithms were applied to 

some outdoor images in the experiment and they 

showed mixed performance during assessment. We 

have come to the conclusion that no fusion algorithm 

always outperforms the others and performance of a 

fusion algorithm relies on images of specific 

applications. A combined qualitative and quantitative 

assessment approach seems to be the best way to 

determine which fusion algorithm is most appropriate 

for an application. Quantitative assessment metrics, 

however, cannot dominate the decision process. 

Instead, they are best served as a tool to provide the 

user with some additional technical evidence for 

his/her decision-making.  

 

Despite recent technical progress, image fusion 

has yet reached the stage where it can be reliably and 

massively applied to a broad range of applications. 

More research is needed to develop more robust 

fusion algorithms and related hardware devices for 

real-time practical use. For example, combination of 

image fusion techniques at all levels (i.e., signal-level, 

pixel-level, feature-level, and symbolic level) will be 

likely to improve the quality of fused images and thus 

lead to improved decision-making. Other useful image 



features that have not been made full use of, such as 

color, will need to be further explored for image 

fusion purpose (Smith and Heather, 2005; Fay et al., 

2000). At the same time, performance assessment of 

image fusion should continue to be shared between 

qualitative and quantitative methods, with increasing 

weight being placed toward new quantitative 

assessment techniques. Human users will continue to 

be the sole final decision-makers while improved 

image fusion techniques will continue to relieve their 

workloads and help them make quicker and more 

accurate decisions. 
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